

2000 Marking Scheme

	200	0 Hi	gher Chemi	istry I	Markir	ng Sch	eme
MC Qu	Answer	% Pupils Correct		Rea	soning		
1	A	83	☑A Ca is a metal and Cl is ☑B N and Cl are both non ☑C P and Cl are both non- ☑D Si and Cl are both nor	a non-metal -metals ∴ cov metals ∴ cov n-metals ∴ cov	∴ ionic bonding valent bonding alent bonding valent bonding	g∴ conducts w ∴ no conductio ∵ no conduction ∴ no conduction	hen molten n when molten n when molten on when molten
2	С	71	⊠A Magnesium chloride a ⊠B Magnesium sulphate a ⊠C silver chloride is insol ⊠D Silver sulphate and sc	nd sodium nit and sodium nit uble and forn odium nitrate	rate are both s rate are both s ns as an insolub <u>are both solub</u>	soluble ∴ no pr soluble ∴ no pr le precipitate le ∴ no precipi	ecipitate ecipitate tate
3	A	59	no. of mol = volume × concentrati H2SO4 + 2 1mol 0.005mol volume = -	ion = 0.05litres x (2NaOH - 2mol 0.01mol no. of mol concentration	0.1mol l ⁻¹ = 0.005ma → Na = <u>0.01mol</u> 0.4mol l ⁻¹ = 0	01 2 504 + 2 .025litres = 25cm ³	H₂O
4	A	51	☑A Na is 2,8,1 ∴ Na ⁺ is ☑B Li is 2,1 ∴ Li ⁺ is 2 ☑C Ca is 2,8,8,2 ∴ Ca ²⁺ is ☑D Ca is 2,8,8,2 ∴ Ca ²⁺ is	2,8 and 2 and s 2,8,8 and s 2,8,8 and	O is 2,6 . F is 2,7 . O is 2,6 . Br is 2,8,18,7 .	. O ²⁻ is 2,8 [.] F ⁻ is 2,8 . O ²⁻ is 2,8 . Br⁻ is 2,8,18,8	3
5	С	88	Rate = $\frac{\Delta quanti}{\Delta time}$	$\frac{ty}{2} = \frac{0.20}{20}$	$\frac{-0.05}{-0} = \frac{0.1}{20}$	5) = 0.0075 ma	l l ⁻¹ s ⁻¹
6	D	39	 ☑ A 100cm³ of 2 mol l⁻¹ Ho ☑ B 100cm³ of 2 mol l⁻¹ H₂ ☑ C 100cm³ of 2 mol l⁻¹ CH ☑ D magnesium would read 	Cl would give 2SO4 would gi H3COOH would ct faster thar	twice the volur ve twice the vo d release gas n 1 zinc but give o	ne of gas given blume of gas (tw nore slowly (we off the same ve	off vo H⁺ per f.u.) ak acid) olume of gas
7	В	82	■A x is the activation ene ■B y is the enthalpy chan ■C x+y is the activation f ■D x-y is incorrect	ergy for the f ige for the re for the revers	forward reactio action se reaction	on	
8	В	52	Chlorine is smaller than so chlorine has a more protor nucleus in chlorine than so	odium. Both at ns in the nucle odium.	toms fill up the eus so the oute	same outer ele r shell is pullec	ectron shell but I closer to the
9	С	72	⊠A Electronegativities: C ⊠B Electronegativities: C ☑C Electronegativities: C ☑D Electronegativities: C	:1=3.0 and Br= 1=3.0 and C1=3 1=3.0 and F=4 :1=3.0 and I=2	2.8 ∴ chlorine 3.0 ∴ chlorine .0∴ chlorine is .6∴ chlorine is	is more electro has no charge (less electrone s more electron	pnegative and δ- pure covalent) gative and δ+ negative and δ-
10	В	67	☑A Silicon dioxide is a co ☑B Silicon dioxide is cova ☑C Silicon dioxide is a cov ☑D Silicon dioxide has stu	valent networ Ilent network valent networ rong covalent	rk and has no d as it has non-n k but carbon d bonds which a	iscrete molecu netals in it and ioxide has disc re much strong	les a high m.pt. rete molecules er than VderW
11	C	29	X A ¹ H has no neutrons X B 1g of ¹² C = $^{1}/_{12}$ mol of atoms = $^{1}/_{2}$ mol of neutrons (6 neutrons per ¹² C atom) X C 2g of ²⁴ Mg = $^{2}/_{24}$ mol of atoms = 1 mol of neutrons (12 neutrons per ²⁴ Mg atom) X D 2g of ²² Ne = $^{2}/_{22}$ mol of atoms = $^{24}/_{22}$ mol of neutrons (12 neutrons per ²² Ne atom)				
12	A	80	Namebutanoic acideFormulaC3H7COOH C4H8O2C4H8O2	thyl ethanoate C2H5OOCCH3 C4H8O2	ethyl methanoate C₂H₅OOCH₃ C₃H6O₂	ethyl propanoate C2H5OOCC2H5 C5H10O2	propyl ethanoate C3H7OOCCH3 C5H10O2

13	В	61	H CH_3 H H H $-C - C - C - H$ H OH H 2-methylbut-1-ene 2-methylbut-2-ene
14	D	72	⊠A esters can be used in flavourings e.g. pear drops ⊠B esters have nice smells and can be used in perfumes ⊠C esters are insoluble in water and are used as solvents e.g. nail varnish remover ☑D esters are not used in toothpastes
15	D	82	For condensation polymerisation to proceed each monomer needs to have 2 functional groups. Methanol (answer D) stops the reaction as it does not have the 2 nd functional groups.
16	В	52	 ☑ A ethane cannot undergo addition reactions as it does not have a C=C double bond ☑ B ethane can be cracked into ethene (gets smaller and C=C double bond produced) ☑ C hydrogenation is an addition reaction and ethane lacks a C=C double bond ☑ D alkanes do not oxidise
17	A	68	☑A poly(ethenol) is soluble in water ⊠B poly(ethyne) is an electrical conductor ⊠C biopol is a biodegradable polymer ⊠D kevlar is a very strong polymer
18	D	62	Amino acids join together to make proteins by condensation polymerisation where small monomers join together to make larger molecule with water/small molecule removed at join.
19	D	70	 A Fats and oils do not have hydrogen bonding B Fats and oils do not have cross-links between molecules C Fat molecules are more tightly packed compared to oil D fat molecules are more saturated as fats have less C=C double bonds
20	D	67	 ☑A Land rental is a fixed cost as land leases usually last many years ☑B The cost of plant construction is an initial set cost and not a variable cost ☑C The cost of labour is a fixed cost as it will rise steadily of the years ☑D The cost of raw materials varies up and down due to market conditions
21	С	76	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
22	A	87	 A At equilibrium: rate of forward reaction = rate of reverse reaction B At equilibrium the concentrations of reactants and products are constant C The activation energy for forward and reverse reactions are not equal O Chemical reaction do not have zero enthalpy change as bond are broken and different bonds are formed
23	С	70	 ☑A High temperature favours the endothermic (reverse) reaction ☑B High temperature favours the endothermic (reverse) reaction ☑C Low temperature and high pressure both favour the forward reaction ☑D Low pressure favours the pressure-increasing reverse reaction
24	В	76	 A hydrochloric acid is a strong acid B hydrochloric acid is a strong acid and 0.1 mol l⁻¹ is considered a dilute solution C hydrochloric acid is a strong acid O 0.1 mol l⁻¹ is considered a dilute solution

25	D	53		рН = 4 ГН⁺1 = 10-́	pH = 6 ⁴ [H⁺] = 10 ⁻⁶	pF 6 Conc	$44 \rightarrow 6$	6 ∴[H⁺] de	creases 10 ⁻⁴	→ 10 ⁻⁶ r of 100	
			XA sodi	um hydrox	ide has a hi	aher ni	-1 than	ammonia a	s it is fully ic	nised	
26	D	70	E Sodiu E Sodiu E Sodiu E D both	um hydroxi um hydroxi n 0.1 mol l ⁻¹	ide and amm ide has high solutions w	ionia ha er cona ill neut	ave dif ductivi ralise	ferent for ty as it is f the same v	mula masses fully ionised olume of acid	d	
27	С	43		1. IO3 ⁻ 2IO3 ⁻ 2IO3 ⁻ 2IO3 ⁻ - 2IO3 ⁻ -	. Write down 2. Bo 3. Add H 4. Add H ⁺ + 12H ⁺ 5. Add e ⁻ to + 12H ⁺ + 10e ⁻	the ma alance a 20 to ot ions to o most p	in speci II atoms ther sic other s positive	ies involved \rightarrow I ₂ s except O c \rightarrow I ₂ de to balance \rightarrow I ₂ + 6H ide to balan \rightarrow I ₂ + 6H e side to balan \rightarrow I ₂ + 6H e side to balan	in the reaction and H 120 ce H atoms 120 ance charge 120	n	
28	В	66			<i>c</i>	2×96 2×96 193 193 = 48	2e⁻ — 2mol 6500C 000C × ⁰ 3250C	→ C 1m 1m 0.25/1 0.25	LI ol ol mol		
29	С	69	On β-emi one. This	ission, the would tur	mass numbe n a group 4	er stay: elemen	s the s It into	ame and th a group 5 e	ne atomic nur element	nber incre	zases by
30	C	83		F	Time (years) Fraction	0	21 ¹ / ₂ = 0.5	42 <u>14</u> = 0.25	63 <u>1</u> /8 = 0.125		
	Q31→34	l are Gric	Question	ns which ar	re a style of	questi	ion no l	longer used	l in Higher C	hemistry.	
	F	lowever	the cont If the questio	ent of the	e questions re is more than 1	5 CAN S answer tl	till CO	me up in f e are usually 2 d	uture exam	5.	
31a	С	рН ([H⁺] 1) 1 l 1×10 ⁻¹ 1;	2 3 ×10 ⁻² 1×10 ⁻³	4 5 1×10 ⁻⁴ 1×10 ⁻⁵	6 1×10 ⁻⁶	7 1×10 ⁻⁷ 1	8 9 1×10 ⁻⁸ 1×10 ⁻⁹	10 11 1×10 ⁻¹⁰ 1×10 ⁻¹¹	12 13 1×10 ⁻¹² 1×10	14 ⁻¹³ 1×10 ⁻¹⁴
31b	F	[OH ⁻] bef	[;] ore dilutio	n = 0.1mol l ⁻	⁻¹ ∴ [OH ⁻] af ⁻ [H ⁺] = <u>1</u> [/	ter dilu [.] 10 ⁻¹⁴ 0H ⁻]	tion = 0 = <u>10⁻¹⁴</u> 10 ⁻²	0.01mol l ⁻¹ = 1 4 <u>2</u> = 1×10 ⁻¹²	x10 ⁻² mol l ⁻¹		
320	R+C	1mol CO	= 28g	7g CO =	= 0.25mol C() mole	cules	2 atoms p	er molecule	0.5mol or	f atoms
JZU	(both for 1 mark)	1mol CH	4 = 16g	32g CH4 =	<u>= 2mol CH4 r</u> = 2mol LL m	nolecul	les	5 atoms p	er molecule	10mol of	atoms
226	C+F	1mol 50	<u>- 29</u> 2 = 64 1a	32a SO2	= 0.5mol SC)2 mole	s cules	3 atoms p	er molecule	1 5mol of	f atoms
320	(both for 1 mark)	1mol NH	<u> </u>	17g NH ₃ :	= 1mol NH ₃ I	nolecu	les	4 atoms p	er molecule	4mol of	atoms
33a	В	Temper particle	rature is es in a si	s directly ubstance	/ proportio	onal to	o the	average	kinetic ene	rgy of t	he
33b	A,D (1 mark each)	 A An increase in the particle size will decrease the rate of reaction B An increase in temperature will increase the rate of reaction C An increase in surface area available for reaction will increase the rate of reaction An increase in activation energy will decrease the rate of reaction An increase in concentration will increase the rate of reaction An increase in concentration will increase the rate of reaction 									
			ats and oils are hydrolysed as they break down into glycerol and 3 fatty								
34a	С	Fats ar acids. \	nd oils ar Nater is	re hydrol : added a	lysed as the licross the	iey br breal	reak c ks in 1	down into the molec	glycerol aı :ules.	nd 3 fat	ty

2000 Higher Chemistry Marking Scheme Long Reasoning Answer Qu Petrol is made by reforming naphtha fraction 1a Naphtha Diesel is made by blending gas oil fraction Part of Name Meaning hexane six carbons in main chain 1b 2,2-dimethylhexane -dimethyl two -CH3 methyl groups 2 2-Side groups both located on C_2 straight molecules get too Straight petrol molecules fit too closely together and will auto-ignite before the spark . This 1c close to each other and is called knocking or pinking. The addition of branched chain molecules or ring molecules keeps the molecules far enough apart to prevent autoignition before the spark. auto-ignite before spark HNO3 no. of mol = volume x concentration = 0.05litres x 0.200mol l⁻¹ = 0.01mol $CaCO_3 + 2HNO_3 \longrightarrow Ca(NO_3)_2 + H_2O + CO_2$ 1mol 2mol 0.005mol 0.01mol 2a 1.64 gfm CaCO3 = (1×40.1) + (1×12) + (3×16) = 40.1 + 12 + 48 = 100q mass = no. of mol × gfm = 0.005 × 100.1g = 0.50g Mass of calcite unreacted = Total mass of calcite - mass of calcite reacted = 2.14g - 0.50g = 1.64g Filter contents of beaker to collect unreacted calcite 2b Answer to include: Dry calcite and weigh calcite on balance. Fibrous proteins are linear structural proteins e.g. collagen 3a Fibrous Globular proteins are specially-shaped proteins found in enzymes PPA Technique Question. Catalase is an enzyme found in potatoes which **3**b(i) Hydrogen peroxide catalyses the following reaction: $H_2O_2 \longrightarrow H_2O + \frac{1}{2}O_2$ Count the number of PPA Technique Question. The number of oxygen bubbles given off in 30 **3b**(ii) bubbles of gas given off seconds is proportional to the rate of reaction. in a set time Nuclear Equation $^{252}_{98}Cf$ + $^{11}_{5}B \rightarrow ^{257}_{103}Lr$ + $^{6}_{0}n$ **4**a showing: Nuclear fusion reactions require the extremely high temperature found in **4**b Stars or the sun stars to join the nuclei of atoms together. $afm C_4H_9OH = (4x12) + (10x1) + (1x16) = 48 + 10 + 16 = 74a$ 5a 134kJ mass = no. of mol x qfm = $0.1 \times 74 = 7.4q$ From graph: when mass = 7.4g then heat released = 134kJ thermometer copper 100cm³ beaker water PPA Technique Question: Copper beaker to allow better heat transference from flame to water 5b Beaker clamped into flame instead of using tripod Beaker stirred to ensure equal temperature of water draught shield Draught shield to prevent heat being lost to draughts spirit Butan-1-ol burne 0.1mol = 143kJ 5c(i) -1430 kJ mol⁻¹ = 1430kJ mol⁻¹ = -1430kJ mol⁻¹ (exothermic reaction) 1mol

		[
_		Alcohol Enthalpy of Compustion	Methana	l Ethanol ol ⁻¹ -1367 k.T.n	Proj	Propan-1-ol		tan-1-ol	
5C (ii)	-2686kJ mol ⁻¹	Difference	-727 KG III	-640	-653	(-6	66)		
		Prediction	-	-		-	-268	9 kJ mol ⁻¹	
-	Incomplete	Incomplete com	bustion resu	lts in less heat e	nergy being	released	than f	rom	
5C (iii)	combustion	complete combu	stion.					1	
		The enthalpy of	combustion	definition states	s that it mu	st be com	plete c	ombustion.	
60 (i)	H' are not used up	A catalyst spe	eds up a ch	emical reaction	n and is che	emically i	inchan	iged at	
	in reaction	the end of the reaction.							
		Type of	Catalyst		Definiti	on			
6a (ii)	Homogeneous	Homog	geneous	Catalyst in sa	me state a	state as reactants			
		Hetero	geneous	Catalyst in di	fferent sto	ate from	react	ants	
	uncatalysed								
		Catalysts redu	ce the acti	vation energy.	The activa	tion ener	gy is t	the	
		energy barrier	which mus	t be overcome	if reactan	ts are to	becor	ne	
60		products. The	removal of	a catalyst will	increase ti	he activa	tion ei	nergy and	
	R	increase the ne	eignt of th	e activation da	rrier. Cata	iysts ao i	not an	er the	
	catalysed	value of the en	inaipy cha	nge so k unu r	ure unchun	iyeu			
	reaction	Electronegativ	ity is a mea	sure of the at	traction fo	n electro	ons an	element	
70	Attraction for	has within a bo	ond. The ma	ore electronead	tive an ele	ment is t	the mo	ore the	
74	electrons within a bond	electrons with	a covalent	bond are attra	icted to th	e nucleus	s of th	iat atom.	
		2P2H4	4(g) + 7(D _{2(g)}	► P ₄ O ₁₀ (s) +	4H2O((1)	
7h	35cm ³	2mo	l 7r	nol	1mol		4mol		
70	55CM	2vol	7١	vol	negligible vol	ume n	egligible v	olume	
		10cm	³ 35	cm ³					
		$gtm P_2H_4 = (2x31)+(4x1) = 62 + 4 = 66g mol^{-1}$							
7c	0.12 litres	n o. of mol = $\frac{11033}{gfm} = \frac{0.330 \text{ g}}{66 \text{ g mol}^{-1}} = 0.005 \text{ mol}$							
		Volume = no. of 1	mol x M olar	Volume = 0.005n	nol x 24.0 li [.]	tres mol ⁻¹	= 0.12	itres	
	[NH ₃] ²								
8a (i)	$K = \frac{[N_2] \times [H_2]^3}{[N_2] \times [H_2]^3}$	Problem Solving Question							
		Catalysts decree	use the activ	vation energy of	both the fo	rward and	rever	se of	
8a (ii)	No change to	reactions and all	lows equilibr	ium to be achiev	ed guicker.	However,	the po	sition of	
	position of equilibrium	equilibrium and the relative amounts of reactants and products are unchanged.							
•	Products are removed	In the Haber process, materials are removed, cooled, unreacted reactants recycled							
8b	before equilibrium is	and liquid ammonia collected. By removing a product before equilibrium is achieved,							
	reached	more and more product ammonia is made to replace the removed ammonia.							
				нн	0				
•	N 1 1		Н	- 'c - 'c - c <	́ Н				
9a	Diagram showing:				`O—└ -	н			
				нн	Ĭ				
					H				
		ACID	+ METAL	HYDROXIDE	\rightarrow .	SALT	+	WATER	
9b (i)	Sodium hydroxide	propanoic acid	+ sodi	um hydroxide	\rightarrow sodiur	n propanoate	: +	water	
		C₂H₅COOH	+	NaOH	\rightarrow C ₂ H	₅COO⁻Na⁺	+	H₂O	
		Propanoate ion	s join up wi	th H⁺ ions fror	n water to	form pro	panoi	c acid	
		molecules: $C_2H_5COO^{-}(aq) + H^{+}(aq) \rightarrow C_2H_5COOH(l)$							
9 b(ii)	Answer including:	Equilibrium in water moves to replace H^* ions: $H_2O(l) \rightarrow H^*(aq) + OH^*(aq)$							
		H ⁺ ions are ren	noved but (JH ⁻ ion concent	tration incr	reases an	id mak	es the	
		solution alkalin	e.						

10	Fullerene is molecular	Fullerene is a molecular covalent substance with C_{60} in a spherical sh	ape.						
10a	Diamond and graphite	Diamond and graphite are covalent networks with no definite molecules and long lines of covalent bonds in all directions							
		$afm K_3C_{60} = (3\times39.1) + (60\times12) = 117.3 + 720 = 837.3a$							
10h()	0.004	∴ 1mol K ₃ C ₆₀ contains 720g of carbon.							
100(1)	0.004	no. of mol = mass of carbon = 2.88g = 0.004 mol							
		mass of carbon in 1 mol 720g mol ⁻¹ 1 1/2 720g mol ⁻¹							
10h(ii)	0 4692a	$1mol K_{3}C_{60} = (3\times39.1) + (60\times12) = 117.3 + 720 = 837.3g$ $1mol K_{3} = 3 \times 39.1 = 117.3g$							
100(1)	0.107Lg	$mass = n_0. \text{ of mol} \times gfm = 0.004 \times 117.3 = 0.4692q$							
		loss of electrons							
11a	Oxidation	Oxidation is indicated by: increase in oxygen : hydrogen ratio							
		decrease in hydrogen : oxygen rat	10						
11b	x=8	8 hydrogen atoms							
		8 6							
		H-C-H							
		H −7							
	Acid denatures	Enzymes are specifically-shaped globular proteins which are very se	nsitive						
11c	the enzyme	to changes in temperature or pH. These changes alter the shape of	the W						
120	x=9 y=12 z=4	$5N_2O_4 + 4CH_3NHNH_2 \longrightarrow 9N_2 + 12H_2O + 4$	-'' ICO2						
	H,								
12b	H-C-N-N	Hydrazine compounds are very reactive chemicals due to the N-N single bond present in the molecule.							
	ЧН								
	ΓΙ								
		$C + N_2 + 3H_2 \rightarrow CH_3NHNH_2$							
		• $CH_3NHNH_2 + 2\frac{1}{2}O_2 \rightarrow CO_2 + 3H_2O + N_2 \qquad \Delta H= -13$	305 kJ						
		$ C + O_2 \rightarrow CO_2 \qquad \Delta H = -3 $	394 kJ						
12c	53 k.T mol ⁻¹	$\bullet \qquad \qquad H_2 + \frac{1}{2}O_2 \rightarrow H_2O \qquad \qquad \Delta H = -2$	286 kJ						
ILC		$\bullet x-1 \qquad CO_2 + 3H_2O + N_2 \rightarrow CH_3NHNH_2 + 2\frac{1}{2}O_2 \Delta H = +13$	305 kJ						
		$ C + O_2 \rightarrow CO_2 \qquad \Delta H = -3 $	394 kJ						
			358 kJ						
		add $C + N_2 + 3H_2 \rightarrow CH_3NHNH_2$ $\Delta H=$	+53kJ						
13a	$Na(g) \rightarrow Na^{+}(g) + e^{-}$	1st Ionisation Energy: the energy required to remove one mole of el	ectrons						
		$R(a) \rightarrow R^{+}(a) + e^{-1}$	7						
126	1 806v10 ²⁴	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
130	1.000×10	$B^{2+}(a) \rightarrow B^{3+}(a) + e^{-}$ since of electrons = 5 x 0.02 x10^{-4} $= 1.806 \times 10^{24} \text{ electrons}$							
1400	Hydrolygia	Molecule splits and water added across the break	<u> </u>						
1 -+ u(I)	riyuruiysis	Involecule spiris and water added across the break							

14a(ii)	H CH3 H-C-C-OH H CH3 2-methylpropan-2-ol	The key strategy in this question is drawing propanone in the same way that methanal is drawn in the question. H, $C=O$ H, H_3C H_3
14a(iii)	74.9%	$\begin{array}{rllllllllllllllllllllllllllllllllllll$
14b	Making plastics	Methanal was previously known as formaldehyde and reacts with urea to make the plastic <i>urea formaldehyde</i>
15a	I₂ + 2e⁻ → 2I⁻	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{array}{rcl} \text{Oxidation:} \\ C_6\text{H}_8\text{O}_6 & \rightarrow & C_6\text{H}_6\text{O}_6 & + & 2\text{H}^+ & + & 2\text{e}^- \end{array}$
15b(i)	Answer to include:	A deionised water bottle washes all the contents of the beaker into the conical flask through a funnel. Care must be taken to ensure no spillage. The directional jet of the water bottle is used to hit the bottom of the beaker and all the contents are pushed into the conical flask. The funnel is also thoroughly washed. The conical flask is then filled up to the 250cm ³ line.
15b(ii)	Colourless to Blue/Black	There is no iodine in the flask at the start of the titration \therefore colourless in flask at beginning. When all the vitamin C has reacted, further iodine remains in the flask unreacted and turns starch indicator blue/black.
15		no. of mol I_2 = volume x concentration = 0.0295litres x 0.02mol L^2 = 0.00059mol $C_6H_8O_6$ + I_2 \longrightarrow $C_6H_6O_6$ + $2H^+$ + $2I^-$
150	1.0384	0.00059mol 0.00059mol 25cm ³ vitamin C solution contains 0.00059mol vitamin C 250cm ³ vitamin C solution contains 0.0059mol vitamin C ∴ 1 vitamin C tablet = 0.0059mol gfm VitC C ₆ H ₈ O ₆ = (6×12) + (8×1) + (6×16) = 72 + 8 + 96 = 176g mass = no. of mol × gfm = 0.0059mol × 176g mol ⁻¹ = 1.0384g
15c 16a(i)	1.0384 Esters often have sweet smells	0.00059mol 0.00059mol 25cm ³ vitamin C solution contains 0.00059mol vitamin C 250cm ³ vitamin C solution contains 0.0059mol vitamin C ∴ 1 vitamin C tablet = 0.0059mol gfm VitC C ₆ H ₈ O ₆ = (6x12) + (8x1) + (6x16) = 72 + 8 + 96 = 176g mass = no. of mol × gfm = 0.0059mol × 176g mol ⁻¹ = 1.0384g esters can be used in flavourings e.g. pear drops esters have pleasant smells and can be used in perfumes esters are insoluble in water and are used as solvents e.g. nail polish remover
15c 16a(i) 16a(ii)	1.0384 Esters often have sweet smells Geranyl acetate will decolourise bromine solution	0.00059mol 0.00059mol 25cm ³ vitamin C solution contains 0.00059mol vitamin C 250cm ³ vitamin C solution contains 0.0059mol vitamin C ∴ 1 vitamin C tablet = 0.0059mol gfm VitC C ₆ H ₈ O ₆ = (6x12) + (8x1) + (6x16) = 72 + 8 + 96 = 176g mass = no. of mol x gfm = 0.0059mol x 176g mol ⁻¹ = 1.0384g esters can be used in flavourings e.g. pear drops esters have pleasant smells and can be used in perfumes esters are insoluble in water and are used as solvents e.g. nail polish remover Geranyl acetate has a C=C double bond which will decolourise bromine solution. p-cresyl acetate will have no effect on bromine water as it has no C=C double bond.
15c 16a(i) 16a(ii) 16b	1.0384 Esters often have sweet smells Geranyl acetate will decolourise bromine solution Diagram showing:	IntolIntol0.00059mol0.00059mol25cm³ vitamin C solution contains 0.00059mol vitamin C250cm³ vitamin C solution contains0.0059mol vitamin C \therefore 1 vitamin C tablet = 0.0059molgfm VitC C ₆ H ₈ O ₆ = (6x12) + (8x1) + (6x16) = 72 + 8 + 96 = 176gmass = no. of mol × gfm = 0.0059mol × 176g mol ⁻¹ = 1.0384gesters can be used in flavourings e.g. pear dropsesters have pleasant smells and can be used in perfumesesters are insoluble in water and are used as solvents e.g. nail polish removerGeranyl acetate has a C=C double bond which will decolourise bromine solution.p-cresyl acetate will have no effect on bromine water as it has no C=C double bond.HO-CH ₂ -CH ₂ -O-H
15c 16a(i) 16a(ii) 16b 16c	1.0384 Esters often have sweet smells Geranyl acetate will decolourise bromine solution Diagram showing: H-c(CH ₂) ₇ H-c(CH ₂) ₇ H-c(CH ₂) ₇ H-C(CH ₂) ₇	$\frac{1}{C} = 0$ $\frac{1}{2} = 0$
15c 16a(i) 16a(ii) 16b 16c 17a(i)	1.0384 Esters often have <u>sweet smells</u> Geranyl acetate will decolourise bromine solution Diagram showing: $H - C - (CH_2)_7 - H + H - C - (CH_2)_7$ Delocalised electron on each carbon can jump to another carbon atom	$\frac{1}{25 \text{ cm}^3} \text{ vitamin } C \text{ solution contains } 0.00059 \text{mol} \text{ vitamin } C \text{ solution contains } 0.0059 \text{mol vitamin } C \text{ 1 vitamin } C \text{ tablet } = 0.0059 \text{mol} \text{ gfm } \text{Vit} C C_6 H_8 O_6 = (6 \times 12) + (8 \times 1) + (6 \times 16) = 72 + 8 + 96 = 176g \text{ mass } = \text{ no. of mol } \times \text{gfm} = 0.0059 \text{mol} \times 176g \text{ mol}^{-1} = 1.0384g esters can be used in flavourings e.g. pear drops esters have pleasant smells and can be used in perfumes esters are insoluble in water and are used as solvents e.g. nail polish remover Geranyl acetate has a C=C double bond which will decolourise bromine solution. p-cresyl acetate will have no effect on bromine water as it has no C=C double bond. H C CH2-CH2-O-H H C CH2-CH2-CH2-O H CH2-CH2-CH2-O H CH2-CH2-CH2-O H CH2-CH$
15c 16a(i) 16a(ii) 16b 16c 17a(i) 17a(ii)	1.0384 Esters often have sweet smells Geranyl acetate will decolourise bromine solution Diagram showing: $H - c - (CH_2)_7 - H + H - C - (CH_2)_7$ Delocalised electron on each carbon can jump to another carbon atom sodium hydroxide + hydrogen	Intoi 0.00059mol 25cm ³ vitamin C solution contains 0.00059mol vitamin C 250cm ³ vitamin C solution contains 0.0059mol vitamin C \therefore 1 vitamin C tablet = 0.0059mol gfm VitC $C_6H_8O_6$ = (6x12) + (8x1) + (6x16) = 72 + 8 + 96 = 176g mass = no. of mol x gfm = 0.0059mol x 176g mol ⁻¹ = 1.0384g esters can be used in flavourings e.g. pear drops esters have pleasant smells and can be used in perfumes esters are insoluble in water and are used as solvents e.g. nail polish remover Geranyl acetate has a C=C double bond which will decolourise bromine solution. p-cresyl acetate will have no effect on bromine water as it has no C=C double bond. H C(CH ₂)7 H C(CH ₂)7 H C(CH ₂)7 Ketone H Carbon atoms in graphite each have one electron not used in covalent bonding. These electrons can jump from atom to atom and conduct electricity. 2Na + 2H ₂ O > 2NaOH + H ₂